Size Effect in Compression Fracture: Splitting Crack Band
نویسنده
چکیده
A simplified fracture-mechanics-based model of compression failure of centrically or eccentrically loaded quasi-brittle columns is presented and the size effect on the nominal strength of a column is predicted. Failure is modeled as propagation of a band of axial splitting cracks in a direction orthogonal or inclined with respect to the column axis. The maximum load is calculated from the condition that the energy released from the column due to crack band advance be equal to the energy consumed by the splitting cracks. The axial stress transmitted across the crack band is determined as the critical stress for buckling of the microslabs of material between the axial splitting cracks, and the work on the microslabs during postbuckling deflections is taken into account. The critical postbuckling deflection of the microslabs is determined from a compatibility condition. Under the assumption of small enough material inhomogeneities, the spacing s of the splitting cracks is calculated by minimizing the failure load and is found to decrease with structure size D as D• The size effect on the nominal strength of geometrically similar columns is found to disappear asymptotically for small sizes D, and to asymptotically approach the power law Dfor large sizes D (where D = cross section dimension). However, when the material inhomogeneities are so large that they preclude the decrease of s with increasing D, the asymptotic size effect changes to D'12• The size effect intensifies with increasing slenderness of the column, which is explained by the fact that a more slender column stores more strain energy. The predicted size effect describes quite well previous tests at Northwestern University of reduced-scale tied reinforced concrete columns of different sizes (with size range 1:4) and different slenderness (ranging from 19 to 53). Finally, a simple modification is pointed out for the case of shear loading of concrete, in which a system of parallel tensile cracks in the diagonal compression direction develops before the maximum compressive stress is reached.
منابع مشابه
Fracturing Truss Model: Size Effect in Shear Failure of Reinforced Concrete
The classical truss model (or strut-and-tie model) for shear failure of reinforced concrete beams is modified to describe fracture phenomena during failure. The failure is assumed to be caused by propagation of a compression fracture across the concrete strut during the portion of the loading history in which the maximum load is reached. The compression fracture may consist of a band of splitti...
متن کاملThe Effect of Temperature on the Fracture Surface Morphology and Ductility of La55Al25Ni5Cu10Co5 BMG
In this research, the effect of temperature on the mean size of fracture surface features, as well as the relation between fracture surface morphologies and ductility of a La-based BMG as a relatively brittle alloy, was systematically investigated. After producing the alloy, three-point bending experiments, over a wide range of temperatures, were conducted on the samples; then the fracture surf...
متن کاملEffect of Rock Fracture Filling on Mode I and II Fracture Toughness
This paper focuses on some fracture toughness tests performed on the pre-cracked Brazilian specimens of rock-like materials. Also the effect of rock fracture filling on the fracture toughness was considered experimentally. Fracture toughness is a key parameter for studying the crack propagation and fragmentation processes in rock structures. Fracture mechanics is an applicable tool to improve ...
متن کاملCohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests
The simplest form of a sufficiently realistic description of the fracture of concrete as well as some other quasibrittle materials is a bilinear softening stress-separation law (or an analogous bilinear law for a crack band). This law is characterized by four independent material parameters: the tensile strength, f ′ t , the stress σk at the change of slope, and two independent fracture energie...
متن کاملSize Effect in Blunt Fracture: Concrete,
The fracture front in concrete, as well as rock, is blunted by a zone of microcracking, and in ductile metals by a zone of yielding. This blunting causes deviations from the structural size effect known from linear elastic fracture mechanics (LEFM). The size effect is studied first for concrete or rock structures, using dimensional analysis and illustrative examples. Fracture is considered to b...
متن کامل